43 research outputs found

    A Note on Cyclic Codes from APN Functions

    Full text link
    Cyclic codes, as linear block error-correcting codes in coding theory, play a vital role and have wide applications. Ding in \cite{D} constructed a number of classes of cyclic codes from almost perfect nonlinear (APN) functions and planar functions over finite fields and presented ten open problems on cyclic codes from highly nonlinear functions. In this paper, we consider two open problems involving the inverse APN functions f(x)=xqm2f(x)=x^{q^m-2} and the Dobbertin APN function f(x)=x24i+23i+22i+2i1f(x)=x^{2^{4i}+2^{3i}+2^{2i}+2^{i}-1}. From the calculation of linear spans and the minimal polynomials of two sequences generated by these two classes of APN functions, the dimensions of the corresponding cyclic codes are determined and lower bounds on the minimum weight of these cyclic codes are presented. Actually, we present a framework for the minimal polynomial and linear span of the sequence ss^{\infty} defined by st=Tr((1+αt)e)s_t=Tr((1+\alpha^t)^e), where α\alpha is a primitive element in GF(q)GF(q). These techniques can also be applied into other open problems in \cite{D}

    The Weight Distributions of Cyclic Codes and Elliptic Curves

    Full text link
    Cyclic codes with two zeros and their dual codes as a practically and theoretically interesting class of linear codes, have been studied for many years. However, the weight distributions of cyclic codes are difficult to determine. From elliptic curves, this paper determines the weight distributions of dual codes of cyclic codes with two zeros for a few more cases

    A New Lever Function with Adequate Indeterminacy

    Full text link
    The key transform of the REESSE1+ asymmetrical cryptosystem is Ci = (Ai * W ^ l(i)) ^ d (% M) with l(i) in Omega = {5, 7, ..., 2n + 3} for i = 1, ..., n, where l(i) is called a lever function. In this paper, the authors give a simplified key transform Ci = Ai * W ^ l(i) (% M) with a new lever function l(i) from {1, ..., n} to Omega = {+/-5, +/-6, ..., +/-(n + 4)}, where "+/-" means the selection of the "+" or "-" sign. Discuss the necessity of the new l(i), namely that a simplified private key is insecure if the new l(i) is a constant but not one-to-one function. Further, expound the sufficiency of the new l(i) from four aspects: (1) indeterminacy of the new l(i), (2) insufficient conditions for neutralizing the powers of W and W ^-1 even if Omega = {5, 6, ..., n + 4}, (3) verification by examples, and (4) running times of continued fraction attack and W-parameter intersection attack which are the two most efficient algorithms of the probabilistic polytime attacks so far. Last, the authors detail the relation between a lever function and a random oracle.Comment: 13 page

    Implementing 4-Dimensional GLV Method on GLS Elliptic Curves with j-Invariant 0

    Get PDF
    The Gallant-Lambert-Vanstone (GLV) method is a very efficient technique for accelerating point multiplication on elliptic curves with efficiently computable endomorphisms. Galbraith, Lin and Scott (J. Cryptol. 24(3), 446-469 (2011)) showed that point multiplication exploiting the 2-dimensional GLV method on a large class of curves over GF(p^2) was faster than the standard method on general elliptic curves over GF(p), and left as an open problem to study the case of 4-dimensional GLV on special curves (e.g., j(E) = 0) over GF(p^2). We study the above problem in this paper. We show how to get the 4-dimensional GLV decomposition with proper decomposed coefficients, and thus reduce the number of doublings for point multiplication on these curves to only a quarter. The resulting implementation shows that the 4-dimensional GLV method on a GLS curve runs in about 0.78 the time of the 2-dimensional GLV method on the same curve and in between 0.78-0.87 the time of the 2-dimensional GLV method using the standard method over GF(p). In particular, our implementation reduces by up to 27% the time of the previously fastest implementation of point multiplication on x86-64 processors due to Longa and Gebotys (CHES2010)

    Efficient Comb Elliptic Curve Multiplication Methods Resistant to Power Analysis

    Get PDF
    Elliptic Curve Cryptography (ECC) has found wide applications in smart cards and embedded systems. Point multiplication plays a critical role in ECC. Many efficient point multiplication methods have been proposed. One of them is the comb method which is much more efficient than other methods if precomputation points are calculated in advance or elsewhere. Unfortunately, Many efficient point multiplication methods including the comb method are vulnerable to power-analysis attacks. Various algorithms to make elliptic curve point multiplication secure to power-analysis attacks have been proposed recently, such as the double-and-add-always method, Möller\u27s window method, Okeya et al.\u27s odd-only window method, and Hedabou et al.\u27s comb method. In this paper, we first present a novel comb recoding algorithm which converts an integer to a sequence of signed, odd-only comb bit-columns. Using this recoding algorithm, we then present several comb methods, both Simple Power Analysis (SPA)-nonresistant and SPA-resistant, for point multiplication. These comb methods are more efficient than the original SPA-nonresistant comb method and Hedabou et al.\u27s SPA-resistant comb method. Our comb methods inherit the advantage of a comb method, running much faster than Möller\u27s window method and Okeya et al.\u27s odd-only window method, as well as other window methods such as the efficient signed mm-ary window method, if only the evaluation phase is taken into account. Combined with randomization projective coordinates or other randomization techniques and certain precautions in selecting elliptic curves and parameters, our SPA-resistant comb methods are resistant to all power-analysis attacks

    Generating Pairing-Friendly Elliptic Curves Using Parameterized Families

    No full text

    On properties of the Mullineux map with an application to Schur modules

    No full text
    this paper we study a third description of M based on the operator J on the set of p-regular partitions defined in [13
    corecore